

Question 1 (6 Marks)

The cumulative frequency table shows information about the times, in minutes, taken by 40 people to complete a puzzle.

Time (m minutes)	Cumulative frequency
$20 < m \leq 40$	5
$20 < m \leq 60$	25
$20 < m \leq 80$	35
$20 < m \leq 100$	38
$20 < m \leq 120$	40

- (a) On the grid below, draw a cumulative frequency graph for this information.

(2)

- (b) Use your graph to find an estimate for the interquartile range.

..... minutes
(2)

One of the 40 people is chosen at random.

- (c) Use your graph to find an estimate for the probability that this person took between 50 minutes and 90 minutes to complete the puzzle.

.....
(2)

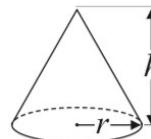
Question 2 (3 Marks)

$\sqrt{5}(\sqrt{8} + \sqrt{18})$ can be written in the form $a\sqrt{10}$ where a is an integer.

Find the value of a .

$a = \dots$

Question 3 (2 Marks)


Given that n can be any integer such that $n > 1$, prove that $n^2 - n$ is never an odd number.

Question 4 (4 Marks)

A cone has a volume of 98 cm^3 .
The radius of the cone is 5.13 cm .

- (a) Work out an estimate for the height of the cone.

$$\text{Volume of cone} = \frac{1}{3} \pi r^2 h$$

..... cm
(3)

John uses a calculator to work out the height of the cone to 2 decimal places.

- (b) Will your estimate be more than John's answer or less than John's answer?
Give reasons for your answer.

.....
.....
.....
(1)